Main Page

ABOUT COMPANY

Terahertz Photonics, LLC is a company developing terahertz components and devices for security systems, wireless communications, contactless analysis and diagnostics of socially significant diseases that operate in frequency range of 0.1 to 10 THz.


INDIVIDUAL TECHNICAL SOLUTIONS FOR EVERY UNIQUE PROBLEM


TECHNOLOGIES

  • Detectors and emitters of THz radiation
  • THz components for control of THz radiation
    • filters;
    • polarizers;
    • isolators;
    • waveguides, etc.
  • THz spectrometers in time-domain, frequency-domain and quasi time-domain modes;
  • THz imaging systems in time-domain, frequency-domain and quasi time-domain modes;
  • THz components with tunable characteristics.

SERVICES AND PROPOSED SOLUTIONS

Services for laboratories and companies engaged in R&D

Design, calculation and manufacture of THz components and devices, including narrow-band and high-pass filters, film and wire polarizers, Fresnel lenses, GRIN lenses, F-Theta lenses, waveguides, photothermoelectric detectors, measurement of thermal conductivity and conductivity of thin films, etc.


Design and calculation of THz components and devices for the frequency range of 0.1-10 THz



Fabrication and testing of THz components and devices



Investigation of properties of THz materials, composites and metamaterials (refractive index, conductivity tensors, permittivity, etc.)



Design, assembly and adjustment of THz time-domain spectrometers on photoconductive antennas and nonlinear crystals (turnkey)


PRODUCTS

Detector of THz radiation

Type: photothermoelectric
Frequency range: 0.1-10 THz
Sensitivity: no less 0.01 V/W (at 0.14 THz)
NETD: till 5 мК (at 0.14 THz)
NEP: 45 nW∙Hz-0.5 (at 0.14 THz)

RESEARCH ARTICLES AND PROJECTS

  1. Meged M. S. et al. Modified Tinkham’s Equation for Exact Computation of a Thin Film Terahertz Complex Conductivity //Journal of Infrared, Millimeter, and Terahertz Waves. – 2023. – С. 1-13 (https://doi.org/10.1007/s10762-023-00928-z).
  2. Zaitsev A. D. et al. Frequency-Selective Surface Based on Negative-Group-Delay Bismuth–Mica Medium //Photonics. – MDPI, 2023. – Т. 10. – №. 5. – С. 501 (https://doi.org/10.3390/photonics10050501).
  3. Nazarov R. K. et al. Tunable physical effects in Bi-mica hyperbolic structures //Optics Communications. – 2022. – Т. 508. – С. 127673 (https://doi.org/10.1016/j.optcom.2021.127673).
  4. Smirnov S. et al. Sub‐THz Phase Shifters Enabled by Photoconductive Single‐Walled Carbon Nanotube Layers //Advanced Photonics Research. – 2022. – Т. 4. – №. 4. – С. 2200042 (https://doi.org/10.1002/adpr.202200042).
  5. Demchenko P. et al. BiSb structured thin-film as photothermoelectric terahertz detector //Infrared, Millimeter-Wave, and Terahertz Technologies IX. – SPIE, 2022. – Т. 12324. – С. 245-253 (https://doi.org/10.1117/12.2656080).
  6. Tukmakova A. et al. The development of the simulation methodology for steady-state thermoreflectance technique //Infrared, Millimeter-Wave, and Terahertz Technologies IX. – SPIE, 2022. – Т. 12324. – С. 235-244 (https://doi.org/10.1117/12.2655440).
  7. Khodzitsky M. K. et al. Photothermal, photoelectric, and photothermoelectric effects in Bi-Sb thin films in the terahertz frequency range at room temperature //Photonics. – MDPI, 2021. – Т. 8. – №. 3. – С. 76 (https://doi.org/10.3390/photonics8030076).
  8. Przewłoka A. et al. Characterization of silver nanowire layers in the terahertz frequency range //Materials. – 2021. – Т. 14. – №. 23. – С. 7399 (https://doi.org/10.3390/ma14237399).
  9. Khodzitsky M. K. et al. Terahertz Radiation Detection with Bi-Sb Films at Room Temperature //2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). – IEEE, 2021. – С. 9567565 (https://doi.org/10.1109/IRMMW-THz50926.2021.9567565).
  10. Khodzitsky M. et al. THz room-temperature detector based on thermoelectric frequency-selective surface fabricated from Bi88Sb12 thin film //Applied Physics Letters. – 2021. – Т. 119. – №. 16 – С. 164101 (https://doi.org/10.1063/5.0062228).
  11. Kvitsinskiy A. et al. Polarization-sensitive terahertz spectroscopy of multilayer graphene-based films //Infrared, Millimeter-Wave, and Terahertz Technologies VIII. – SPIE, 2021. – Т. 11906. – С. 56-61 (https://doi.org/10.1117/12.2596919).
  12. Kvitsinskiy A. et al. Terahertz waves polarization tunability in unaligned single-wall carbon nanotube thin film //Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XIV. – SPIE, 2021. – Т. 11685. – С. 116851Q (https://doi.org/10.1117/12.2576378).
  13. Zaitsev A. et al. Experimental investigation of optically controlled topological transition in bismuth-mica structure //Scientific Reports. – 2021. – Т. 11. – №. 1. – С. 13653 (https://doi.org/10.1038/s41598-021-93132-9).
  14. Tukmakova A. et al. FEM simulation of frequency-selective surface based on thermoelectric Bi-Sb thin films for THz detection //Photonics. – MDPI, 2021. – Т. 8. – №. 4. – С. 119 (https://doi.org/10.3390/photonics8040119).
  15. Grebenchukov A. et al. Graphene-based optically tunable structure for terahertz polarization control //Journal of Physics: Conference Series. – IOP Publishing, 2020. – Т. 1461. – №. 1. – С. 012062 (https://doi.org/10.1088/1742-6596/1461/1/012062).
  16. Zaitsev A. et al. Bi and Bi1−xSbx thin films for terahertz photonics //AIP Conference Proceedings. – AIP Publishing, 2020. – Т. 2300. – С 020137 (https://doi.org/10.1063/5.0031769).
  17. Zaitsev A. D. et al. Optical and electronic properties of thin bismuth-antimony films in the terahertz frequency range //Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications. – SPIE, 2020. – Т. 11582. – С. 354-357 (https://doi.org/10.1117/12.2583522).
  18. Grebenchukov A. N. et al. Narrowband terahertz graphene metasurface synthesis based on equivalent circuit approach //Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications. – SPIE, 2020. – Т. 11582. – С. 403-407 (https://doi.org/10.1117/12.2583822).
  19. Kuzikova A. V., Vozianova A. V., Khodzitsky M. K. Extraction the diagonal and off-diagonal components of permittivity tensor using terahertz time-domain polarimetry //Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications. – SPIE, 2020. – Т. 11582. – С. 348-353 (https://doi.org/10.1117/12.2583521).
  20. Grebenchukov A. et al. Asymmetric graphene metamaterial for narrowband terahertz modulation //Optics Communications. – 2020. – Т. 476. – С. 126299 (https://doi.org/10.1016/j.optcom.2020.126299).
  21. Tkhorzhevskiy I. L. et al. Properties of Bi and BiSb Nano-Dimensional Layers in THz Frequency Range //Solid State Phenomena. – Trans Tech Publications Ltd, 2020. – Т. 312. – С. 206-212 (https://doi.org/10.4028/www.scientific.net/SSP.312.206).
  22. Zaitsev A. D. et al. Optical and galvanomagnetic properties of Bi1−xSbx thin films in the terahertz frequency range //Applied Sciences. – 2020. – Т. 10. – №. 8. – С. 2724 (https://doi.org/10.3390/app10082724).
  23. Tukmakova A. S. et al. FEM Simulation of THz Detector Based on Sb and Bi88Sb12 Thermoelectric Thin Films //Applied Sciences. – 2020. – Т. 10. – №. 6. – С. 1929 (https://doi.org/10.3390/app10061929).
  24. Masyukov M. et al. Optically tunable terahertz chiral metasurface based on multi-layered graphene //Scientific reports. – 2020. – Т. 10. – №. 1. – С. 3157 (https://doi.org/10.1038/s41598-020-60097-0).
  25. Grebenchukov A. N. et al. Photoexcited terahertz conductivity in multi-layered and intercalated graphene //Optics Communications. – 2020. – Т. 459. – С. 124982 (https://doi.org/10.1016/j.optcom.2019.124982).
  26. Zaitsev A. et al. Hyperbolic Bismuth–Dielectric Structure for Terahertz Photonics //physica status solidi (RRL)–Rapid Research Letters. – 2020. – Т. 14. – №. 7. – С. 2000093 (https://doi.org/10.1002/pssr.202000093).
  27. Kvitsinskiy A. et al. Terahertz time-domain spectroscopic polarimetry of carbon nanomaterials-based structures //Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications. – SPIE, 2020. – Т. 11582. – С. 115820S (https://doi.org/10.1117/12.2580414).
  28. Demchenko P. S. et al. Multilayer graphene: ion gel amplitude modulator for terahertz frequency range //Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications. – SPIE, 2020. – Т. 11582. – С. 115821Q (https://doi.org/10.1117/12.2583531).
  29. Zhang T. et al. Polymer composites based on polyvinyl chloride nanofibers and polypropylene films for terahertz photonics //Optical Materials Express. – 2020. – Т. 10. – №. 10. – С. 2456-2469 (https://doi.org/10.1364/OME.398262).
  30. Grebenchukov A. N. et al. Faraday effect control in graphene-dielectric structure by optical pumping //Journal of Magnetism and Magnetic Materials. – 2019. – Т. 472. – С. 25-28 (https://doi.org/10.1016/j.jmmm.2018.09.110).
  31. Grebenchukov A. N. et al. Multi-layered graphene based optically tunable terahertz absorber //2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2019. – С. 8874522 (https://doi.org/10.1109/IRMMW-THz.2019.8874522).
  32. Zaitsev A., Grebenchukov A., Khodzitsky M. Tunable THz graphene filter based on cross-in-square-shaped resonators metasurface //Photonics. – MDPI, 2019. – Т. 6. – №. 4. – С. 119 (https://doi.org/10.3390/photonics6040119).
  33. Kvitsinskiy A. et al. Terahertz time-domain polarimetry of carbon nanomaterials //2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2019. – С. 8874479 (https://doi.org/10.1109/IRMMW-THz.2019.8874479).
  34. Kvitsinskiy A. et al. Polarization properties of few-layer graphene on silicon substrate in terahertz frequency range //SN Applied Sciences. – 2019. – Т. 1. – №. 12. – С. 1714 (https://doi.org/10.1007/s42452-019-1748-x).
  35. Demchenko P. et al. Optically Tunable Terahertz Notch Filter Based on Carbon Nanotubes //2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2019. – С. 8874546 (https://doi.org/10.1109/IRMMW-THz.2019.8874546).
  36. Baimagambetova R. et al. Study of the effect of carbon nanotube lengths on their conductivity in the terahertz frequency range during optical pumping //Journal of Physics: Conference Series. – IOP Publishing, 2019. – Т. 1410. – №. 1. – С. 012125 (https://doi.org/10.1088/1742-6596/1410/1/012125).
  37. Litvinov E. A. et al. Wire-grid terahertz metamaterial with refractive index less than unity //2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2019. – С. 8873799 (https://doi.org/10.1109/IRMMW-THz.2019.8873799).
  38. Gomon D., Demchenko P., Khodzitsky M. K. THz dielectric photonic crystal with double lattice //2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2019. – С. 8874136 (https://doi.org/10.1109/IRMMW-THz.2019.8874136).
  39. Demchenko P. et al. Influence of optical pumping on properties of carbon nanotubes with different geometric parameters in THz frequency range //2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2018. – С. 8509849 (https://doi.org/10.1109/IRMMW-THz.2018.8509849).
  40. Demchenko P. S. et al. Optical properties of phosphate glass with CdSe quantum dots in terahertz frequency range //Journal of Physics: Conference Series. – IOP Publishing, 2018. – Т. 1062. – №. 1. – С. 012021 (https://doi.org/10.1088/1742-6596/1062/1/012021).
  41. Demchenko P. et al. Study of optical pumping influence on carbon nanotubes permittivity in THz frequency range //Journal of Physics: Conference Series. – IOP Publishing, 2018. – Т. 1124. – №. 5. – С. 051012 (https://doi.org/10.1088/1742-6596/1124/5/051012).
  42. Demchenko P. et al. Study of influence of densification on control of conductivity and spectral characteristics of thin films of carbon nanotubes in terahertz frequency range //EPJ Web of Conferences. – EDP Sciences, 2018. – Т. 195. – С. 06022 (https://doi.org/10.1051/epjconf/201819506022).
  43. Litvinov E. A. et al. Aligned planar-wire zero-index metamaterial for terahertz frequency range //EPJ Web of Conferences. – EDP Sciences, 2018. – Т. 195. – С. 06009 (https://doi.org/10.1051/epjconf/201819506009).
  44. Litvinov E. A. et al. Epsilon-near-zero copper-dielectric composite for terahertz frequency range //Metamaterials, Metadevices, and Metasystems 2018. – SPIE, 2018. – Т. 10719. – С. 1071939 (https://doi.org/10.1117/12.2326018).
  45. Smirnov S. et al. Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications //Nanoscale. – 2018. – Т. 10. – №. 26. – С. 12291-12296 (https://doi.org/10.1039/C8NR03740J).
  46. Grebenchukov A. N., Zaitsev A. D., Khodzitsky M. K. Optically controlled narrowband terahertz switcher based on graphene //Chinese optics. – 2018. – Т. 11. – №. 2. – С. 166-173 (https://doi.org/10.3788/CO.20181102.0166).
  47. Zaitsev A. D. et al. The study of optical properties of graphene intercalated with ferric chloride for application in terahertz photonics //Journal of Physics: Conference Series. – IOP Publishing, 2018. – Т. 1124. – №. 7. – С. 071007 (https://doi.org/10.1088/1742-6596/1124/7/071007).
  48. Grebenchukov A. N. et al. Multilayer graphene based tunable metasurface for terahertz wave control //Infrared, Millimeter-Wave, and Terahertz Technologies V. – SPIE, 2018. – Т. 10826. – С. 108261D (https://doi.org/10.1117/12.2501250).
  49. Grebenchukov A. N. et al. Terahertz conductivity of photoexcited multi-layer graphene //2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2018. – С. 8510131 (https://doi.org/10.1109/IRMMW-THz.2018.8510131).
  50. Grebenchukov A. N. et al. Time resolved terahertz spectroscopy of optically pumped multilayered graphene on silicon substrate //Metamaterials, Metadevices, and Metasystems 2018. – SPIE, 2018. – Т. 10719. – С. 1071938 (https://doi.org/10.1117/12.2325842).
  51. Gomon D. et al. Influence of the incidence radiation polarization on the absorptivity of Electrical Ring Resonator Metasurface in Terahertz frequency range //Journal of Physics: Conference Series. – IOP Publishing, 2018. – Т. 1062. – №. 1. – С. 012013 (https://doi.org/10.1088/1742-6596/1062/1/012013).


The research is supported by the Russian Science Foundation and the Foundation for Assistance to Innovations.

CONTACTS

CEO: Dr. Mikhail K. Khodzitsky

E-mail: khodzitskiy@yandex.ru

Phone: +7 931 261 63 92

Address: 191167, Saint Petersburg, Nevsky Ave. 180/2, lit. А, room 6-Н, office 1/1

“TERAHERTZ PHOTONICS” LIMITED LIABILITY COMPANY

Web-site: thzphotonics.org