О КОМПАНИИ

«Терагерцовая фотоника» – компания по разработке терагерцовых компонент и приборов для систем безопасности, беспроводной связи, бесконтактного анализа и для диагностики социально-значимых заболеваний, которые работают в частотном диапазоне от 0.1 до 10 ТГц


ИНДИВИДУАЛЬНЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ КАЖДОЙ УНИКАЛЬНОЙ ЗАДАЧИ


ТЕХНОЛОГИИ

  • Детекторы ТГц излучения
  • Управление ТГц излучением
    • фильтры
    • поляризаторы
    • специализированные линзы
    • волноводы и др.
  • ТГц спектрометры импульсного, квазиимпульсного и непрерывного режимов
  • ТГц компоненты с управляемыми характеристиками

УСЛУГИ И ПРЕДЛАГАЕМЫЕ РЕШЕНИЯ

Услуги для лабораторий и компаний, занимающихся НИР и НИОКР

Дизайн, расчет и изготовление ТГц компонент и приборов, в том числе узкополосных фильтров и фильтров высоких частот, пленочных и проволочных поляризаторов, линз Френеля, GRIN-линз, F-Theta линз, волноводов, фототермоэлектрических детекторов, измерение теплопроводности и проводимости тонких пленок и др.


Дизайн и расчет ТГц компонент и приборов для работы в диапазоне частот 0.1-10 ТГц



Изготовление и тестирование ТГц компонент и приборов



Исследование ТГц материалов, композитов и метаматериалов (показатель преломления, тензоры проводимости, диэлектрической проницаемости и др.)



Дизайн, сборка и юстировка импульсных ТГц спектрометров на фотопроводящих антеннах и нелинейных кристаллах (под ключ)


ПРОДУКЦИЯ

Детектор ТГц излучения

Тип: фототермоэлектрический (ФТЭ)
Диапазон частот: 0.1-10 ТГц
Чувствительность: не менее 0.01 В/Вт (на 0.14 ТГц)
NETD: до 5 мК (на 0.14 ТГц)
NEP: 45 нВт∙Гц-0.5 (на 0.14 ТГц)
Интерфейсы: DS-1110-3 (подключение блока усиления сигнала, в комплекте), 2×SMA (вывод сигнала при использовании усилителя и без него)
Крепление к держателю: 2×M6 (горизонтальная/вертикальная поляризация)

НАУЧНЫЕ СТАТЬИ И ПРОЕКТЫ

  1. Meged M. S. et al. Modified Tinkham’s Equation for Exact Computation of a Thin Film Terahertz Complex Conductivity //Journal of Infrared, Millimeter, and Terahertz Waves. – 2023. – С. 1-13 (https://doi.org/10.1007/s10762-023-00928-z).
  2. Zaitsev A. D. et al. Frequency-Selective Surface Based on Negative-Group-Delay Bismuth–Mica Medium //Photonics. – MDPI, 2023. – Т. 10. – №. 5. – С. 501 (https://doi.org/10.3390/photonics10050501).
  3. Nazarov R. K. et al. Tunable physical effects in Bi-mica hyperbolic structures //Optics Communications. – 2022. – Т. 508. – С. 127673 (https://doi.org/10.1016/j.optcom.2021.127673).
  4. Smirnov S. et al. Sub‐THz Phase Shifters Enabled by Photoconductive Single‐Walled Carbon Nanotube Layers //Advanced Photonics Research. – 2022. – Т. 4. – №. 4. – С. 2200042 (https://doi.org/10.1002/adpr.202200042).
  5. Demchenko P. et al. BiSb structured thin-film as photothermoelectric terahertz detector //Infrared, Millimeter-Wave, and Terahertz Technologies IX. – SPIE, 2022. – Т. 12324. – С. 245-253 (https://doi.org/10.1117/12.2656080).
  6. Tukmakova A. et al. The development of the simulation methodology for steady-state thermoreflectance technique //Infrared, Millimeter-Wave, and Terahertz Technologies IX. – SPIE, 2022. – Т. 12324. – С. 235-244 (https://doi.org/10.1117/12.2655440).
  7. Khodzitsky M. K. et al. Photothermal, photoelectric, and photothermoelectric effects in Bi-Sb thin films in the terahertz frequency range at room temperature //Photonics. – MDPI, 2021. – Т. 8. – №. 3. – С. 76 (https://doi.org/10.3390/photonics8030076).
  8. Przewłoka A. et al. Characterization of silver nanowire layers in the terahertz frequency range //Materials. – 2021. – Т. 14. – №. 23. – С. 7399 (https://doi.org/10.3390/ma14237399).
  9. Khodzitsky M. K. et al. Terahertz Radiation Detection with Bi-Sb Films at Room Temperature //2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). – IEEE, 2021. – С. 9567565 (https://doi.org/10.1109/IRMMW-THz50926.2021.9567565).
  10. Khodzitsky M. et al. THz room-temperature detector based on thermoelectric frequency-selective surface fabricated from Bi88Sb12 thin film //Applied Physics Letters. – 2021. – Т. 119. – №. 16 – С. 164101 (https://doi.org/10.1063/5.0062228).
  11. Kvitsinskiy A. et al. Polarization-sensitive terahertz spectroscopy of multilayer graphene-based films //Infrared, Millimeter-Wave, and Terahertz Technologies VIII. – SPIE, 2021. – Т. 11906. – С. 56-61 (https://doi.org/10.1117/12.2596919).
  12. Kvitsinskiy A. et al. Terahertz waves polarization tunability in unaligned single-wall carbon nanotube thin film //Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XIV. – SPIE, 2021. – Т. 11685. – С. 116851Q (https://doi.org/10.1117/12.2576378).
  13. Zaitsev A. et al. Experimental investigation of optically controlled topological transition in bismuth-mica structure //Scientific Reports. – 2021. – Т. 11. – №. 1. – С. 13653 (https://doi.org/10.1038/s41598-021-93132-9).
  14. Tukmakova A. et al. FEM simulation of frequency-selective surface based on thermoelectric Bi-Sb thin films for THz detection //Photonics. – MDPI, 2021. – Т. 8. – №. 4. – С. 119 (https://doi.org/10.3390/photonics8040119).
  15. Grebenchukov A. et al. Graphene-based optically tunable structure for terahertz polarization control //Journal of Physics: Conference Series. – IOP Publishing, 2020. – Т. 1461. – №. 1. – С. 012062 (https://doi.org/10.1088/1742-6596/1461/1/012062).
  16. Zaitsev A. et al. Bi and Bi1−xSbx thin films for terahertz photonics //AIP Conference Proceedings. – AIP Publishing, 2020. – Т. 2300. – С 020137 (https://doi.org/10.1063/5.0031769).
  17. Zaitsev A. D. et al. Optical and electronic properties of thin bismuth-antimony films in the terahertz frequency range //Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications. – SPIE, 2020. – Т. 11582. – С. 354-357 (https://doi.org/10.1117/12.2583522).
  18. Grebenchukov A. N. et al. Narrowband terahertz graphene metasurface synthesis based on equivalent circuit approach //Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications. – SPIE, 2020. – Т. 11582. – С. 403-407 (https://doi.org/10.1117/12.2583822).
  19. Kuzikova A. V., Vozianova A. V., Khodzitsky M. K. Extraction the diagonal and off-diagonal components of permittivity tensor using terahertz time-domain polarimetry //Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications. – SPIE, 2020. – Т. 11582. – С. 348-353 (https://doi.org/10.1117/12.2583521).
  20. Grebenchukov A. et al. Asymmetric graphene metamaterial for narrowband terahertz modulation //Optics Communications. – 2020. – Т. 476. – С. 126299 (https://doi.org/10.1016/j.optcom.2020.126299).
  21. Tkhorzhevskiy I. L. et al. Properties of Bi and BiSb Nano-Dimensional Layers in THz Frequency Range //Solid State Phenomena. – Trans Tech Publications Ltd, 2020. – Т. 312. – С. 206-212 (https://doi.org/10.4028/www.scientific.net/SSP.312.206).
  22. Zaitsev A. D. et al. Optical and galvanomagnetic properties of Bi1−xSbx thin films in the terahertz frequency range //Applied Sciences. – 2020. – Т. 10. – №. 8. – С. 2724 (https://doi.org/10.3390/app10082724).
  23. Tukmakova A. S. et al. FEM Simulation of THz Detector Based on Sb and Bi88Sb12 Thermoelectric Thin Films //Applied Sciences. – 2020. – Т. 10. – №. 6. – С. 1929 (https://doi.org/10.3390/app10061929).
  24. Masyukov M. et al. Optically tunable terahertz chiral metasurface based on multi-layered graphene //Scientific reports. – 2020. – Т. 10. – №. 1. – С. 3157 (https://doi.org/10.1038/s41598-020-60097-0).
  25. Grebenchukov A. N. et al. Photoexcited terahertz conductivity in multi-layered and intercalated graphene //Optics Communications. – 2020. – Т. 459. – С. 124982 (https://doi.org/10.1016/j.optcom.2019.124982).
  26. Zaitsev A. et al. Hyperbolic Bismuth–Dielectric Structure for Terahertz Photonics //physica status solidi (RRL)–Rapid Research Letters. – 2020. – Т. 14. – №. 7. – С. 2000093 (https://doi.org/10.1002/pssr.202000093).
  27. Kvitsinskiy A. et al. Terahertz time-domain spectroscopic polarimetry of carbon nanomaterials-based structures //Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications. – SPIE, 2020. – Т. 11582. – С. 115820S (https://doi.org/10.1117/12.2580414).
  28. Demchenko P. S. et al. Multilayer graphene: ion gel amplitude modulator for terahertz frequency range //Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications. – SPIE, 2020. – Т. 11582. – С. 115821Q (https://doi.org/10.1117/12.2583531).
  29. Zhang T. et al. Polymer composites based on polyvinyl chloride nanofibers and polypropylene films for terahertz photonics //Optical Materials Express. – 2020. – Т. 10. – №. 10. – С. 2456-2469 (https://doi.org/10.1364/OME.398262).
  30. Grebenchukov A. N. et al. Faraday effect control in graphene-dielectric structure by optical pumping //Journal of Magnetism and Magnetic Materials. – 2019. – Т. 472. – С. 25-28 (https://doi.org/10.1016/j.jmmm.2018.09.110).
  31. Grebenchukov A. N. et al. Multi-layered graphene based optically tunable terahertz absorber //2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2019. – С. 8874522 (https://doi.org/10.1109/IRMMW-THz.2019.8874522).
  32. Zaitsev A., Grebenchukov A., Khodzitsky M. Tunable THz graphene filter based on cross-in-square-shaped resonators metasurface //Photonics. – MDPI, 2019. – Т. 6. – №. 4. – С. 119 (https://doi.org/10.3390/photonics6040119).
  33. Kvitsinskiy A. et al. Terahertz time-domain polarimetry of carbon nanomaterials //2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2019. – С. 8874479 (https://doi.org/10.1109/IRMMW-THz.2019.8874479).
  34. Kvitsinskiy A. et al. Polarization properties of few-layer graphene on silicon substrate in terahertz frequency range //SN Applied Sciences. – 2019. – Т. 1. – №. 12. – С. 1714 (https://doi.org/10.1007/s42452-019-1748-x).
  35. Demchenko P. et al. Optically Tunable Terahertz Notch Filter Based on Carbon Nanotubes //2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2019. – С. 8874546 (https://doi.org/10.1109/IRMMW-THz.2019.8874546).
  36. Baimagambetova R. et al. Study of the effect of carbon nanotube lengths on their conductivity in the terahertz frequency range during optical pumping //Journal of Physics: Conference Series. – IOP Publishing, 2019. – Т. 1410. – №. 1. – С. 012125 (https://doi.org/10.1088/1742-6596/1410/1/012125).
  37. Litvinov E. A. et al. Wire-grid terahertz metamaterial with refractive index less than unity //2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2019. – С. 8873799 (https://doi.org/10.1109/IRMMW-THz.2019.8873799).
  38. Gomon D., Demchenko P., Khodzitsky M. K. THz dielectric photonic crystal with double lattice //2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2019. – С. 8874136 (https://doi.org/10.1109/IRMMW-THz.2019.8874136).
  39. Demchenko P. et al. Influence of optical pumping on properties of carbon nanotubes with different geometric parameters in THz frequency range //2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2018. – С. 8509849 (https://doi.org/10.1109/IRMMW-THz.2018.8509849).
  40. Demchenko P. S. et al. Optical properties of phosphate glass with CdSe quantum dots in terahertz frequency range //Journal of Physics: Conference Series. – IOP Publishing, 2018. – Т. 1062. – №. 1. – С. 012021 (https://doi.org/10.1088/1742-6596/1062/1/012021).
  41. Demchenko P. et al. Study of optical pumping influence on carbon nanotubes permittivity in THz frequency range //Journal of Physics: Conference Series. – IOP Publishing, 2018. – Т. 1124. – №. 5. – С. 051012 (https://doi.org/10.1088/1742-6596/1124/5/051012).
  42. Demchenko P. et al. Study of influence of densification on control of conductivity and spectral characteristics of thin films of carbon nanotubes in terahertz frequency range //EPJ Web of Conferences. – EDP Sciences, 2018. – Т. 195. – С. 06022 (https://doi.org/10.1051/epjconf/201819506022).
  43. Litvinov E. A. et al. Aligned planar-wire zero-index metamaterial for terahertz frequency range //EPJ Web of Conferences. – EDP Sciences, 2018. – Т. 195. – С. 06009 (https://doi.org/10.1051/epjconf/201819506009).
  44. Litvinov E. A. et al. Epsilon-near-zero copper-dielectric composite for terahertz frequency range //Metamaterials, Metadevices, and Metasystems 2018. – SPIE, 2018. – Т. 10719. – С. 1071939 (https://doi.org/10.1117/12.2326018).
  45. Smirnov S. et al. Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications //Nanoscale. – 2018. – Т. 10. – №. 26. – С. 12291-12296 (https://doi.org/10.1039/C8NR03740J).
  46. Grebenchukov A. N., Zaitsev A. D., Khodzitsky M. K. Optically controlled narrowband terahertz switcher based on graphene //Chinese optics. – 2018. – Т. 11. – №. 2. – С. 166-173 (https://doi.org/10.3788/CO.20181102.0166).
  47. Zaitsev A. D. et al. The study of optical properties of graphene intercalated with ferric chloride for application in terahertz photonics //Journal of Physics: Conference Series. – IOP Publishing, 2018. – Т. 1124. – №. 7. – С. 071007 (https://doi.org/10.1088/1742-6596/1124/7/071007).
  48. Grebenchukov A. N. et al. Multilayer graphene based tunable metasurface for terahertz wave control //Infrared, Millimeter-Wave, and Terahertz Technologies V. – SPIE, 2018. – Т. 10826. – С. 108261D (https://doi.org/10.1117/12.2501250).
  49. Grebenchukov A. N. et al. Terahertz conductivity of photoexcited multi-layer graphene //2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). – IEEE, 2018. – С. 8510131 (https://doi.org/10.1109/IRMMW-THz.2018.8510131).
  50. Grebenchukov A. N. et al. Time resolved terahertz spectroscopy of optically pumped multilayered graphene on silicon substrate //Metamaterials, Metadevices, and Metasystems 2018. – SPIE, 2018. – Т. 10719. – С. 1071938 (https://doi.org/10.1117/12.2325842).
  51. Gomon D. et al. Influence of the incidence radiation polarization on the absorptivity of Electrical Ring Resonator Metasurface in Terahertz frequency range //Journal of Physics: Conference Series. – IOP Publishing, 2018. – Т. 1062. – №. 1. – С. 012013 (https://doi.org/10.1088/1742-6596/1062/1/012013).


Исследование осуществляется при поддержке Российского научного фонда и Фонда содействия инновациям

КОНТАКТЫ

Электронная почта: khodzitskiy@yandex.ru, 1125474@members.sk.ru

Телефон: +7 931 261 63 92

Адрес: 191167, г. Санкт-Петербург, пр-кт Невский д. 180/2, литера А, помещ. 6-Н, офис 1/1

Общество с ограниченной ответственностью (ООО) «Терагерцовая фотоника»

ОГРН 1227800094653
ИНН 7842206100

thzphotonics.org